Skip to main content
Daily Archives

December 1, 2022

Predicting the risk of mortality during hospitalization in sick severely malnourished children using daily evaluation of key clinical warning signs.

Abstract

Background

Despite adherence to WHO guidelines, inpatient mortality among sick children admitted to hospital with complicated severe acute malnutrition (SAM) remains unacceptably high. Several studies have examined risk factors present at admission for mortality. However, risks may evolve during admission with medical and nutritional treatment or deterioration. Currently, no specific guidance exists for assessing daily treatment response. This study aimed to determine the prognostic value of monitoring clinical signs on a daily basis for assessing mortality risk during hospitalization in children with SAM.

Methods

This is a secondary analysis of data from a randomized trial (NCT02246296) among 843 hospitalized children with SAM. Daily clinical signs were prospectively collected during ward rounds. Multivariable extended Cox regression using backward feature selection was performed to identify daily clinical warning signs (CWS) associated with time to death within the first 21 days of hospitalization. Predictive models were subsequently developed, and their prognostic performance evaluated using Harrell’s concordance index (C-index) and time-dependent area under the curve (tAUC).

Results

Inpatient case fatality ratio was 16.3% (n=127). The presence of the following CWS during daily assessment were found to be independent predictors of inpatient mortality: symptomatic hypoglycemia, reduced consciousness, chest indrawing, not able to complete feeds, nutritional edema, diarrhea, and fever. Daily risk scores computed using these 7 CWS together with MUAC<10.5cm at admission as additional CWS predict survival outcome of children with SAM with a C-index of 0.81 (95% CI 0.77–0.86). Moreover, counting signs among the top 5 CWS (reduced consciousness, symptomatic hypoglycemia, chest indrawing, not able to complete foods, and MUAC<10.5cm) provided a simpler tool with similar prognostic performance (C-index of 0.79; 95% CI 0.74–0.84). Having 1 or 2 of these CWS on any day during hospitalization was associated with a 3 or 11-fold increased mortality risk compared with no signs, respectively.

Conclusions

This study provides evidence for structured monitoring of daily CWS as recommended clinical practice as it improves prediction of inpatient mortality among sick children with complicated SAM. We propose a simple counting-tool to guide healthcare workers to assess treatment response for these children.

Read Full Report here

Minimally invasive post-mortem intestinal tissue sampling in malnourished and acutely ill children is feasible and informative

Abstract

Background

 

Intestinal disorders such as environmental enteric dysfunction (EED) are prevalent in low- and middle-income countries (LMICs) and important contributors to childhood undernutrition and mortality. Autopsies are rarely performed in LMICs but minimally invasive tissue sampling is increasingly deployed as a more feasible and acceptable procedure, although protocols have been devoid of intestinal sampling to date. We sought to determine (1) the feasibility of postmortem intestinal sampling, (2) whether autolysis precludes enteric biopsies’ utility, and (3) histopathologic features among children who died during hospitalization with acute illness or undernutrition.

Methods

Transabdominal needle and endoscopic forceps upper and lower intestinal sampling were conducted among children aged 1 week to 59 months who died while hospitalized in Blantyre, Malawi. Autolysis ratings were determined for each hematoxylin and eosin slide, and upper and lower intestinal scoring systems were adapted to assess histopathologic features and their severity.

Results

Endoscopic and transabdominal sampling procedures were attempted in 28 and 14 cases, respectively, with >90% success obtaining targeted tissue. Varying degrees of autolysis were present in all samples and precluded histopathologic scoring of 6% of 122 biopsies. Greater autolysis in duodenal samples was seen with longer postmortem interval (Beta = 0.06, 95% confidence interval, 0.02–0.11). Histopathologic features identified included duodenal Paneth and goblet cell depletion. Acute inflammation was absent but chronic inflammation was prevalent in both upper and lower enteric samples. Severe chronic rectal inflammation was identified in children as young as 5.5 weeks.

Conclusions

Minimally invasive postmortem intestinal sampling is feasible and identifies histopathology that can inform mortality contributors.

Read Full Report here

Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition.

Abstract

Children admitted to hospital with an acute illness and concurrent severe malnutrition [complicated severe malnutrition (CSM)] have a high risk of dying. The biological processes underlying their mortality are poorly understood. In this case-control study nested within a multicenter randomized controlled trial among children with CSM in Kenya and Malawi, we found that blood metabolomic and proteomic profiles robustly differentiated children who died (n = 92) from those who survived (n = 92). Fatalities were characterized by increased energetic substrates (tricarboxylic acid cycle metabolites), microbial metabolites (e.g., propionate and isobutyrate), acute phase proteins (e.g., calprotectin and C-reactive protein), and inflammatory markers (e.g., interleukin-8 and tumor necrosis factor–α). These perturbations indicated disruptions in mitochondria-related bioenergetic pathways and sepsis-like responses. This study identified specific biomolecular disturbances associated with CSM mortality, revealing that systemic inflammation and bioenergetic deficits are targetable pathophysiological processes for improving survival of this vulnerable population.

Read Full Report here

The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition.

Background

While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling’s forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM).

Methods

We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort.

Findings

We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM.

Interpretation

Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM.

Funding

Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA).

Read Full Report here

The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia.

Abstract

Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network (www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach.
Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children.
Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases.
Trial registration NCT03208725.

Read Full Report here